Jestliže se dva trojúhelníky shodují ve dvou vnitřních úhlech, pak jsou podobné. Jestliže dva trojúhelníky mají stejný poměr délek dvou párů odpovídajících si stran a shodují se v úhlu jimi sevřeném, pak jsou podobné.Jestliže jsou poměry všech sobě odpovídajících stran trojúhelníků shodné, pak jsou tyto trojúhelníky podobné. Konstanta k je poměr podobnosti. ΔABC ~ ΔA´B´C´ Čteme: trojúhelník ABC je podobný trojúhelníku A´B´C´. Příklad: Je dán ΔABC: a = 28,2cm; b = 25,3 cm; c = 48,4 cm.Definice: Zobrazení v rovině se nazývá podobným zobrazením (podobností), jestliže každé úsečce AB přiřazuje úsečku A´B´ pro jejíž velikost platí . Koeficient k nazýváme poměr podobnosti.
Co to je koeficient podobnosti : Přesněji řečeno, útvary jsou podobné, pokud jeden můžeme získat z druhého kombinací rovnoměrného zmenšení či zvětšení a následným posunutím, otočením nebo překlopením. Podobnost zachovává velikost úhlů a poměr délek. Poměr délek odpovídajících úseček v obou útvarech se nazývá koeficient podobnosti.
Jak poznat podobnost
Každé dva trojúhelníky, které mají sobě rovné poměry délek dvou odpovídajících si stran a shodují se v úhlu jimi sevřeném, jsou podobné.
Jak zjistit zda je trojúhelník pravoúhlý : Jestliže v trojúhelníku platí, že součet druhých mocnin délek dvou kratších stran je roven druhé mocnině délky nejdelší strany, potom je tento trojúhelník pravoúhlý.
Věta sss: Dva trojúhelníky, které se shodují ve všech třech stranách, jsou shodné. Věta usu: Dva trojúhelníky, které se shodují v jedné straně a úhlech přilehlých k této straně, jsou shodné. Věta sus: Dva trojúhelníky, které se shodují ve dvou stranách a úhlu jimi sevřeném, jsou shodné.
podobnost (obecný pojem) – vlastnost různých věcí nebo dějů, kdy se liší (jen) některé charakteristiky nebo vlastnosti těchto věcí či se jejich charakteristiky liší jen málo.
Co je to přímá a nepřímá shodnost
Přímá a nepřímá shodnost
Shodnost zachovávající orientaci se nazývá přímá neboli přemístění. Shodnost měnící orientaci se nazývá nepřímá. Posunutí a otočení (a tedy i středová souměrnost) jsou přímé shodnosti (přemístění), zachovávají orientaci. (Posunuté) osové souměrnosti jsou nepřímé shodnosti, mění orientaci.roviny (též „podobností v rovině ), jestliže existuje kladné reálné číslo k tak, že pro každé dva body X, Y roviny a jejich obrazy X ,Y platí |X Y | = k|XY |. Číslo k se nazývá koeficient podobnosti f.Podobné zobrazení s koeficientem podobnosti k=1 je shodné zobrazení. Každé podobné zobrazení je prosté. Obdobně jako u shodného zobrazení v každém podobném zobrazení s koeficientem podobnosti k platí: Obrazem každé úsečky AB je úsečka A'B', pro kterou platí |A'B'|=k\cdot |AB|.
VĚTA sus Každé dva trojúhelníky, které mají sobě rovné poměry délek dvou odpovídajících si stran a shodují se v úhlu jimi sevřeném, jsou podobné.
Co je to věta SSS : Věta sss: Dva trojúhelníky, které se shodují ve všech třech stranách, jsou shodné. Věta usu: Dva trojúhelníky, které se shodují v jedné straně a úhlech přilehlých k této straně, jsou shodné. Věta sus: Dva trojúhelníky, které se shodují ve dvou stranách a úhlu jimi sevřeném, jsou shodné.
Jak se pocita přepona : Platí Pythagorova věta
Obsah čtverce sestrojeného nad přeponou pravoúhlého trojúhelníku se rovná součtu obsahů čtverců sestrojených nad jeho odvěsnami. Délku přepony pravoúhlého trojúhelníku vypočteme podle vzorce c2 = a2 + b2.
Jak se vypočítá trojúhelník
Pro výpočet obsahu trojúhelníku použijeme vzorec obsah = (strana krá výška)/2.
Věta USU: Pokud se dva trojúhelníky shodují v jedné straně a v obou úhlech k této straně přilehlých, pak jsou shodné.Pokud se dva trojúhelníky shodují ve dvou stranách a úhlu, který strany svírají, jsou shodné (věta sus).
Co znamená že úsečky jsou shodné : Shodnost úseček je vztah mezi úsečkami, který je v geometrii zaveden pomocí axiomů shodnosti. Je to relace reflexivní, symetrická a tranzitivní na množině všech úseček v prostoru, tedy ekvivalence, která rozkládá množinu všech úseček na třídy navzájem shodných úseček.
Antwort Jak zjistit jestli jsou trojúhelníky podobne? Weitere Antworten – Kdy jsou trojúhelníky podobne
Jestliže se dva trojúhelníky shodují ve dvou vnitřních úhlech, pak jsou podobné. Jestliže dva trojúhelníky mají stejný poměr délek dvou párů odpovídajících si stran a shodují se v úhlu jimi sevřeném, pak jsou podobné.Jestliže jsou poměry všech sobě odpovídajících stran trojúhelníků shodné, pak jsou tyto trojúhelníky podobné. Konstanta k je poměr podobnosti. ΔABC ~ ΔA´B´C´ Čteme: trojúhelník ABC je podobný trojúhelníku A´B´C´. Příklad: Je dán ΔABC: a = 28,2cm; b = 25,3 cm; c = 48,4 cm.Definice: Zobrazení v rovině se nazývá podobným zobrazením (podobností), jestliže každé úsečce AB přiřazuje úsečku A´B´ pro jejíž velikost platí . Koeficient k nazýváme poměr podobnosti.
Co to je koeficient podobnosti : Přesněji řečeno, útvary jsou podobné, pokud jeden můžeme získat z druhého kombinací rovnoměrného zmenšení či zvětšení a následným posunutím, otočením nebo překlopením. Podobnost zachovává velikost úhlů a poměr délek. Poměr délek odpovídajících úseček v obou útvarech se nazývá koeficient podobnosti.
Jak poznat podobnost
Každé dva trojúhelníky, které mají sobě rovné poměry délek dvou odpovídajících si stran a shodují se v úhlu jimi sevřeném, jsou podobné.
Jak zjistit zda je trojúhelník pravoúhlý : Jestliže v trojúhelníku platí, že součet druhých mocnin délek dvou kratších stran je roven druhé mocnině délky nejdelší strany, potom je tento trojúhelník pravoúhlý.
Věta sss: Dva trojúhelníky, které se shodují ve všech třech stranách, jsou shodné. Věta usu: Dva trojúhelníky, které se shodují v jedné straně a úhlech přilehlých k této straně, jsou shodné. Věta sus: Dva trojúhelníky, které se shodují ve dvou stranách a úhlu jimi sevřeném, jsou shodné.
podobnost (obecný pojem) – vlastnost různých věcí nebo dějů, kdy se liší (jen) některé charakteristiky nebo vlastnosti těchto věcí či se jejich charakteristiky liší jen málo.
Co je to přímá a nepřímá shodnost
Přímá a nepřímá shodnost
Shodnost zachovávající orientaci se nazývá přímá neboli přemístění. Shodnost měnící orientaci se nazývá nepřímá. Posunutí a otočení (a tedy i středová souměrnost) jsou přímé shodnosti (přemístění), zachovávají orientaci. (Posunuté) osové souměrnosti jsou nepřímé shodnosti, mění orientaci.roviny (též „podobností v rovině ), jestliže existuje kladné reálné číslo k tak, že pro každé dva body X, Y roviny a jejich obrazy X ,Y platí |X Y | = k|XY |. Číslo k se nazývá koeficient podobnosti f.Podobné zobrazení s koeficientem podobnosti k=1 je shodné zobrazení. Každé podobné zobrazení je prosté. Obdobně jako u shodného zobrazení v každém podobném zobrazení s koeficientem podobnosti k platí: Obrazem každé úsečky AB je úsečka A'B', pro kterou platí |A'B'|=k\cdot |AB|.
VĚTA sus Každé dva trojúhelníky, které mají sobě rovné poměry délek dvou odpovídajících si stran a shodují se v úhlu jimi sevřeném, jsou podobné.
Co je to věta SSS : Věta sss: Dva trojúhelníky, které se shodují ve všech třech stranách, jsou shodné. Věta usu: Dva trojúhelníky, které se shodují v jedné straně a úhlech přilehlých k této straně, jsou shodné. Věta sus: Dva trojúhelníky, které se shodují ve dvou stranách a úhlu jimi sevřeném, jsou shodné.
Jak se pocita přepona : Platí Pythagorova věta
Obsah čtverce sestrojeného nad přeponou pravoúhlého trojúhelníku se rovná součtu obsahů čtverců sestrojených nad jeho odvěsnami. Délku přepony pravoúhlého trojúhelníku vypočteme podle vzorce c2 = a2 + b2.
Jak se vypočítá trojúhelník
Pro výpočet obsahu trojúhelníku použijeme vzorec obsah = (strana krá výška)/2.
Věta USU: Pokud se dva trojúhelníky shodují v jedné straně a v obou úhlech k této straně přilehlých, pak jsou shodné.Pokud se dva trojúhelníky shodují ve dvou stranách a úhlu, který strany svírají, jsou shodné (věta sus).
Co znamená že úsečky jsou shodné : Shodnost úseček je vztah mezi úsečkami, který je v geometrii zaveden pomocí axiomů shodnosti. Je to relace reflexivní, symetrická a tranzitivní na množině všech úseček v prostoru, tedy ekvivalence, která rozkládá množinu všech úseček na třídy navzájem shodných úseček.