Antwort Jak vypočítat třetí stranu pravoúhlého trojúhelníku? Weitere Antworten – Jak vypočítat strany pravoúhlého trojúhelníku

Jak vypočítat třetí stranu pravoúhlého trojúhelníku?
Jak zjistit (bez rýsování), jestli je trojúhelník pravoúhlý Jestliže v trojúhelníku platí, že součet druhých mocnin délek dvou kratších stran je roven druhé mocnině délky nejdelší strany, potom je tento trojúhelník pravoúhlý.umime.to/FV2

Věta zní: Obsah čtverce sestrojeného nad přeponou pravoúhlého trojúhelníku je roven součtu obsahů čtverců nad oběma jeho odvěsnami. Pythagorovu větu můžeme zapsat vztahem c 2 = a 2 + b 2 c^2 = a^2 + b^2 c2=a2+b2, kde c označuje délku přepony pravoúhlého trojúhelníka a délky odvěsen jsou a, b.Vysvětlíme si, jak lze vypočítat délku strany trojúhelníku při zadaném obsahu a délce dvou dalších stran. Pro výpočet použijeme vzorec pro obsah trojúhelníku (strana krát výška)/2.

Jak se počítá Odvěsna v pravoúhlém trojúhelníku : V pravoúhlém trojúhelníku je přepona nejdelší stranou. "Protilehlá odvěsna" je strana naproti zadanému úhlu a "přilehlá odvěsna" je strana vedle daného úhlu.

Jak zjistit třetí stranu trojúhelníku

Pythagorova věta umožňuje dopočítat délku třetí strany pravoúhlého trojúhelníka, u kterého známe délky dvou zbývajících stran: Délka přepony c = a 2 + b 2 c = \sqrt{a^2 + b^2} c=a2+b2 .

Co platí v pravoúhlém trojúhelníku : V pravoúhlém trojúhelníku platí, že velikost plochy čtverce nad odvěsnou je stejná jako plocha obdélníku (vztyčeného výškou) ve čtverci nad odvěsnou. Pythagorova věta: V každém pravoúhlém trojúhelníku je součet obsahů čtverců nad odvěsnami stejný jako obsah čtverce nad přeponou.

Pythagorova věta umožňuje dopočítat délku třetí strany pravoúhlého trojúhelníka, u kterého známe délky dvou zbývajících stran: Délka přepony c = a 2 + b 2 c = \sqrt{a^2 + b^2} c=a2+b2 .

Goniometrické funkce můžeme v pravoúhlém trojúhelníku vyjádřit následovně:

  1. Sinus ( ⁡ sin) úhlu α je poměr délky odvěsny protilehlé úhlu α a délky přepony.
  2. Kosinus ( ⁡ cos) úhlu α je poměr délky odvěsny přilehlé úhlu α a délky přepony.

Jak zjistit jednu stranu trojúhelníku

Trojúhelníky hrají v geometrii klíčovou roli, protože mnoho problémů lze řešit tak, že složitější obrazce rozdělíme na trojúhelníky a následně pracujeme s nimi. Značení stran a úhlů v trojúhelníku: Proti vrcholu A je strana a, proti vrcholu B je strana b a proti vrcholu C je strana c.Goniometrické funkce a pravoúhlý trojúhelník

  1. Sinus ( ⁡ sin) úhlu α je poměr délky odvěsny protilehlé úhlu α a délky přepony.
  2. Kosinus ( ⁡ cos) úhlu α je poměr délky odvěsny přilehlé úhlu α a délky přepony.
  3. Tangens ( ⁡ tan) úhlu α je poměr délky odvěsny protilehlé úhlu α a délky odvěsny přilehlé úhlu α.

Goniometrické funkce můžeme v pravoúhlém trojúhelníku vyjádřit následovně:

  1. Sinus ( ⁡ sin) úhlu α je poměr délky odvěsny protilehlé úhlu α a délky přepony.
  2. Kosinus ( ⁡ cos) úhlu α je poměr délky odvěsny přilehlé úhlu α a délky přepony.


Nejdelší strana v pravoúhlém trojúhelníku se nazývá přepona. Přepona leží proti pravému úhlu. Zbývající dvě strany nazýváme odvěsny.

Jak spočítat 3 stranu trojúhelníku : Pythagorova věta umožňuje dopočítat délku třetí strany pravoúhlého trojúhelníka, u kterého známe délky dvou zbývajících stran: Délka přepony c = a 2 + b 2 c = \sqrt{a^2 + b^2} c=a2+b2 .

Jak zjistit Preponu : Pythagorova věta

  1. c2 = a2 + b2 – tedy:
  2. Obsah čtverce sestrojeného nad přeponou pravoúhlého trojúhelníku je roven součtu obsahů čtverců sestrojených nad jeho odvěsnami.

Jak se pocita tg

Existují ještě dvě další goniometrické funkce, tangens a kotangens. Hlavní rozdíl oproti předchozím goniometrickým funkcím je ten, že tangens a kotangens pracuje pouze s odvěsnami, nepracuje s přeponou. Tangens úhlu α se rovná poměru délky protilehlé odvěsny ku délce přilehlé odvěsny.

X [º] X [rad] cos(2x)
1 0,0175 0,9994
2 0,0349 0,9976
3 0,0524 0,9945
4 0,0698 0,9903

Hodnoty sinus na jednotkové kružnici

x (úhel)
30° π/6 1/12
150° 5π/6 5/12
45° π/4 1/8
135° 3π/4 3/8

Jak se pocita síň cos tg : Goniometrické funkce a pravoúhlý trojúhelník

  1. Sinus ( ⁡ sin) úhlu α je poměr délky odvěsny protilehlé úhlu α a délky přepony.
  2. Kosinus ( ⁡ cos) úhlu α je poměr délky odvěsny přilehlé úhlu α a délky přepony.
  3. Tangens ( ⁡ tan) úhlu α je poměr délky odvěsny protilehlé úhlu α a délky odvěsny přilehlé úhlu α.